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ABSTRACT 

The machine developed by E. R. Fitzgerald to investigate dynamic mechanical 
properties of solids is analyzed for extraneous resonant modes. 
presented to represent several  nonideal machine modes; the effect of these modes upon 
drive tube motion is calculated. 
calculate the effect of nonideal modes upon the dynamic compliance. 
show resonances in the calculated compliance which a r e  indistinguishable from those 
reported by Fitzgerald. 

Mechanical models a r e  

Fitzgerald's procedure for data analysis is used to 
The calculations 
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RESONANT MODE ANALYSIS  OF THE FITZGERALD APPARATUS 

by James P. C u s i c k  a n d  Donald R. B e h r e n d t  

Lewis Research C e n t e r  

SUMMARY 

The machine developed by E. R. Fitzgerald to investigate dynamic mechanical 
properties of solids is analyzed for extraneous resonant modes. 
presented to represent several nonideal machine modes; the effect of these modes upon 
drive tube motion is calculated. 
calculate the effect of nonideal modes upon the dynamic compliance. 
show resonances in the calculated compliance which a re  indistinguishable from those 
reported by Fitzgerald. 

Mechanical models are 

Fitzgerald's procedure for data analysis is used to 
The calculations 

INTRODUCTION 

Fitzgerald (refs. 1 and 2) describes an apparatus which he uses to investigate the 
mechanical properties of solids by measurement of the dynamic shear compliance. The 
apparatus shown in figure 1, subjects a pair of samples to two mechanical forces: 
(1) a sinusoidal shearing force of preselected frequency which is applied by means of an 
aluminum drive tube, and (2) a static compressive force which clamps the samples to 
both the drive tube and the inertial floating mass. The static clamping force is developed 
by a screw-driven wedge in the floating mass assembly (see fig. 1) .  
force is developed by an alternating current flow in coils 1A and 2A; the coils being 
situated in a radial magnetic field. 

Fitzgerald determines the mechanical compliance of the sample by measurement of 
the electrical impedance of a coil 2A; coil 2A forms on an element of an impedance 
bridge circuit (refs. 1 and 2). The measured electrical impedance of the coil of wire is 
altered by the induced voltages that ar ise  from the velocity of the drive tube. In refer- 
ences 1 and 2, Fitzgerald shows how this electrical impedance is measured and how it is 
related to the mechanical impedance of the moving system. 

The mechanical impedance thus obtained by Fitzgerald combines the mechanical im- 
pedances of the drive tube, the floating mass, and the samples. 

The alternating 

In order to determine 
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Figure 1. - Simplif ied view of Fitzgerald apparatus. Note port ion of a l u m i n u m  dr ive tube 
tha t  extends i n to  magnetic field. 

the mechanical impedances of the samples alone, Fitzgerald resorts  to a vector sub- 
traction of mechanical impedances based upon his own mechanical model of the machine. 
This method requires knowledge of the mechanical impedance of the machine in three 
basic configurations: (1) the free  tube impedance obtained with nothing attached to the 
drive tube; (2) the clamped tube impedance obtained with the floating mass and drive 
tube clamped directly together without samples, and (3) the clamped sample impedance 
(i. e . ,  the mechanical impedance of the system with the drive tube, samples and floating 
mass all clamped together). These mechanical impedances are determined experimen- 
tally; the first two comprise the so-called calibration data for the machine. 

The sample mechanical impedance deduced by Fitzgerald is reported in the form of 
a dynamic shear compliance spectrum in which the vector compliance is plotted against 
frequency and is resolved into two components: the first component, designated J', is 
proportional to the energy stored and recovered in one cycle of the shearing motion; the 
second component, designated J", is proportional to  the energy dissipated in a cycle. 
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The frequency range of the machine is nominally 50 to 5000 Hz. 
The shear compliance spectra reported by Fitzgerald (refs. 3 to 7) and Gotsky and 

Stearns (ref. 8) for hard crystalline samples show marked differences from compliance 
values deduced from elastic theory. The three principal differences are as follows: 

(1) A low frequency (50 to 500 Hz) in-phase compliance value, which is much larger 
than elastic theory prediction, suggests that the sample is softer than elastic predictions. 

(2) Several resonances appear in the compliance spectra which a r e  both unexpected 
and unexplained. 

(3) The quadrature component of the compliance near large high-frequency reso- 
nances (about 3000 Hz) is asymmetric about the resonance frequency and is sometimes 
negative immediately above the resonance frequency. Fitzgerald states that the negative 
sample damping implied by a negative loss compliance is the result of a process internal 
to the sample. 

In references 1 and 2, Fitzgerald presents his analysis of the machine. The as- 
sumptions contained in that analysis which are pertinent to this report are as follows: 

(1) The four sample surfaces which contact the machine (i. e. ,  contact the drive tube 
and the floating mass) connect with the machine in such a manner as to provide atom-to- 
atom contact between sample and machine. 

u r  ement . 
(2) The floating mass assembly behaves as rigid mass at all frequencies of meas- 

(3) The samples, drive tube, and floating mass are always in perfect alinement. 
(4) The motion of the drive tube is uniaxial and only two ideal machine modes exist; 

namely, the axial modes produced by the tube mass resonating with the restoring force 
constant provided by the suspension system and the sample. 

Fitzgerald's analysis makes no provision for nonideal machine performance. As a 
consequence the subtraction method for determining sample properties allows a nonideal 
machine mode to be interpreted as a sample effect. 
show the effect of nonideal machine modes on the dynamic shear compliance. The pro- 
cedure is as follows: 

which must exist are defined. 

frequency. 

dynamic shear compliance is computed as a function of frequency for each type of ma- 
chine mode. 

The purpose of this report  is to 

(1) A mechanical model of the machine is presented and several  nonideal modes 

(2) The mechanical model is used to  compute the drive tube velocity as a function of 

(3) Using Fitzgerald's analytical method and the calculated drive tube velocity, the 
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MECMANICAL MODELS 

The Ideal Machine 

The mobility analog (ref. 9) is used to construct a mechanical or stick model of the 
Fitzgerald machine. 
represent rigid masses, coils represent compliances, and dashpots represent dampers. 
The mechanical model of the Fitzgerald machine is shown in figure 2 where a switch is 
used to indicate the three configurations of the machine. With the switch in position 1, 
the f ree  drive tube configuration is represented. 
and clamped sample configurations, respectively, are represented. 

connected between earth and the drive tube mass. The force generator represents the 
constant amplitude shearing force produced by the magnetic field and the alternating 
electric current which passes through the coils wound on the drive tube. The drive tube 
support system provides the restoring force for axial displacement and is represented 
by a compliance and damper connected between earth and the drive tube mass. This 
portion of figure 2 represents the free tube configuration of the machine. 

the floating mass to the drive tube. Position 2 of figure 2 represents this idealized con- 
dition; the floating mass suspension system is represented by a damper and a compliance 
connected between the floating mass and earth. 

tion 3 of figure 2. The two samples are represented by a single compliance and a 
damper connected in parallel; one end of the parallel combination is attached to the drive 
tube mass, and the other end is attached to the floating mass. The mass of the sample 

In the stick model, lines represent rigid massless rods, blocks 

In positions 2 and 3, the clamped tube 

The stick model of the machine consists of a sinusoidal constant force generator 

The ideal clamped tube configuration is achieved by providing a rigid attachment of 

The mechanical model for the ideal clamped sample configuration is shown as posi- 

Figure 2. - Mechanical  model of ideal Fitzgerald machine where  F 
i s  constant amplitude sinusoidal  force generator; p, C, and M 
are damping, compliance, and mass of dr ive tube; ps and Cs 
are damping and compliance of sample; pf, Cf, and  Mf a re  
damping, compliance, and mass of f loating mass assembly. 
Three basic machine conf igurat ions are available w i th  t h e  switch 
shown: position 1 is model for  free dr ive tube; position 2 i s  model 
for  clamped d r i ve  tube; position 3 is model for  clamped-sample 
conf igurat ion.  
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is neglected in this model. In this model we assume that the two samples actually used 
in the machine can be represented by a single sample; in a subsequent section this re- 
striction shall be removed. 

The Nonideal Machine 

The model presented in figure 2 represents the sample as a compliance with damp- 
ing. Fitzgerald's analysis assumes that the value of the sample compliance is deter- 
mined from sample dimensions only and is independent of the static clamping force. A 
correct analysis of the Fitzgerald machine must recognize that, for hard crystalline 
samples, the static clamping fo rce  greatly alters the value of the effective sample com- 
pliance. The effective sample compliance is defined as the reciprocal of the restoring 
force constant that the sample provides for the drive tube; thus the effective sample 
compliance is the only compliance measured by the Fitzgerald machine, and it is only 
indirectly related to the dimensions and elastic properties of the samples. 

roughness which exists on the clamping surface of the machine and the loading faces of 
the samples. It has been shown (ref. lo),  that the presence of a small  surface rough- 
ness on loading surfaces will prevent complete contact of sample and machine s o  that the 
effective sample compliance is many times larger than the value calculated assuming 
perfect contact. If the sample is a metal o r  other hard crystalline solid, the a rea  of 
contact between sample and machine will be dependent on static clamping, and the ef- 
fective sample compliance will decrease with increasing static clamping. 

mass behaves as a rigid body. 
bly, from which it is clear that the floating mass is composed of many masses which are 
bolted together; both the contact region between the different pieces and the bolts them- 
selves act as compliances; the assembly behaves as a collection of masses coupled to- 
gether with springs. From this it follows that at some frequency a portion of the float- 
ing mass will produce an extraneous resonant mode and the assembly will not move as a 
rigid body. In figure 3 a mechanical model of a floating mass is presented which repre- 
sents one possible method of nonrigid behavior. 
equals the total mass of the floating mass and the two samples are represented by a 
single compliance and damper. This model assumes a single degree of freedom for the 
two parts of the floating mass; while this greatly restricts the possible configurations 
which can be represented, the effect of all such nonrigid modes on the drive tube is ex- 
pected to be similar. 

The effective sample compliance is dependent on static clamping because of surface 

A second assumption by Fitzgerald asser ts  that, at all frequencies, the floating 
Figure 1 presents a sketch of the floating mass assem- 

In this model the sum of all masses 

Another type of mode can result from a nonrigid floating mass. A mechanical model 

5 



Figure 3. - Mechanical  model of non r ig id  f loat ing mass 
mode where  ps and Cs are sample damping and 
compliance, respectively; pf and C f  are damping 
and compliance properties of f loating mass assembly; 
MI f M2 = Mf; p2 and C2 are damping and compl i -  
ance for decoupled mass M2. Th is  model attaches to 
switch position 3 of f i gu re  1 as a n  al ternat ive for 
non r ig id  floating mass modes. 

Figure 4. - Mechanical  model of non r ig id  floating mass 
mode; two samples represented; psl and CS1, and 
ps2 and CS2 are damping and compliances for each 
of two samples expl ic i t ly  represented by t h i s  model; 
pl,  C1 and M represent f loating mass port ion con- 
nected to sample 1, and p2, C2 and M2 represent 
port ion of f loating mass connected to sample 2. 
Physical consistancy requires tha t  M1 + M2 = Mf 
and that 1/CS1 + 1/Cs2 = l / C s  and tha t  psl f ps2 = ps. 

presented in figure 4, explicitly represents each of the samples used in the machine with 
a compliance and damper. Each compliance is attached to the drive tube on one end, and 
to part of the floating mass on the other. Clearly, if the compliances Csl and Cs2 

and dampers psl and ps2 a r e  equal (implying equal sample stiffness, damping, and 
surface roughness) and the floating mass is divided such that M1 = M2, C1 = C2, and 
p1 = pa, then the model of figure 4 will reduce identically to the ideal model of figure 2. 
If, however, the compliances and dampers, which represent the two samples a r e  not 
equal, o r  if  the floating mass does not decouple into two equal masses, then for some 
frequencies each sample will execute a motion independent of the other; the drive tube 
will not move in the ideal manner and a new mode will exist. 
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Figure 5. - Mechanical  model of dr ive tube Support 
w i re  mode where Mw i s  effective mass of w i r e  
and pw and Cw are damping and compliance of 
one-hal f  t h e  w i re  length such  tha t  2Cw = C and  
pw = 2p. Model approximately represents funda- 
mental  mode of a support wire. 

Another one-dimensional mode present in the Fitzgerald machine is produced by the 
drive-tube support wires. A mechanical model for a fundamental resonance of a support 
w i r e  is shown in figure 5; the fundamental mode of the wire is represented by a mass 
attached by springs, to both the earth and the drive tube. The mass is approximately 
equal to the mass of the wire (i. e.,  0.02 g). Since the drive tube mass is 31.4 grams; 
the effect of the wire mode is negligible at all frequencies except its resonance fre- 
quency. The low damping associated with the wire mode results in large vibration am- 
plitude at resonance and drive tube motion is affected. The band width of these wire 
modes is about 1 Hz; their principal deleterious effect on the operation of the machine is 
that they cause nonaxial tube motion which in turn, couples energy into nonaxial machine 
modes. The higher frequency harmonics of the eight support wires for the drive tube, 
place nonaxial excitations throughout the frequency range of the machine. 

Many nonaxial modes exist in the Fitzgerald machine; these modes ar ise  from 
bouncing, rocking and/or twisting motions of the drive tube, samples and floating mass 
collectively and individually. An analysis of drive tube motion in the presence of modes 
with two o r  more degrees of freedom is beyond the scope of this work. 
ever, that any nonaxial mode which derives its energy of excitation from the moving 
drive tube, will perturb the motion of the drive tube; since Fitzgerald's analysis inter- 
prets any abnormal drive tube motions as arising from sample effects, the nonaxial mode 
will appear in the reported data in much the same way that other machine modes appear. 

It is clear, how- 

CALCULATIONS 

Dr ive  Tube Velocity Calcu lat ions 

The velocity of the drive tube of the Fitzgerald machine is calculated from the me- 
chanical models presented in the preceeding section and from the equation 
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V =  FYm (1) 

where V, F, and Y, are complex quantities designating the drive tube velocity, the 
sinusoidal force applied to the drive tube, and the mechanical admittance of the moving 
system, respectively. The mechanical admittance Y for  the ideal free tube model of 
figure 1 is given by: 

Y =  p + i o M - -  [ ( :c)I-l 

where M, C, and p are the mass, compliance, and damping of the free  drive tube, 
respectively; o is 27r times the frequency. Knowing the resonant frequency of the free 
drive tube w0/2a, the compliance of the support system can be calculated from the re- 
lation 

c = (u;M)-l (3) 

In an analogous manner, the admittance of the ideal floating mass Yf can be writ-  
ten as 

Y - p + i w M f - -  
f -  [f ( w3-]-1 (4) 

where Mf, pf, and Cf a r e  the mass, damping, and compliance, respectively, of the 
floating mass assembly. 
clamped tube configuration is Yct; thus, 

The mechanical admittance of the entire moving system for the 

yyf 
= YtYf  

The mechanical admittance of the sample depicted in the model of figure 1 is Ys, 
and is given by 

(5) 
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where ps and Cs denote sample damping and compliance, respectively. The mechan- 
ical admittance for the entire moving system for the clamped sample configuration is 
Ycs, and is given by 

The mechanical admittances for  the other mechanical models are derived in like 
manner. By equation (l), the drive tube velocity is proportional to the mechanical ad- 
mittance of the moving system as viewed from the drive tube. In order that the calcu- 
lated drive tube velocity appear similar to the actual drive tube velocity measured ex- 
perimentally, it is necessary to add a small  constant "noise" t e r m  to the calculated 
drive tube velocity. This noise component reflects the limit of resolution of the 
Fitzgerald bridge measurement method. Because of the large change in magnitude of 
drive tube velocity with frequency, the results are displayed as a plot of the logarithm of 
drive tube velocity against frequency; this display is referred to as a velocity plot. The 
values of machine parameters used in these calculations are values obtained on the 
NASA Fitzgerald machine; these values a r e  summarized as follows: 

Drive tube mass (with coils), g . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31.4 
Floatingmass, g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2500 
Free drive tube resonance frequency, Hz . . . . . . . . . . . . . . . . . . . . . .  16.8 
Shorted-turn constant, Lc/Rc, sec  . . . . . . . . . . . . . . . . . . . . . . .  1 . 4 9 ~ 1 0 - ~  
Transducer magnetic- force constant, ohms -dynes - sec/c m . . . . . . . . . .  1 .7  3x1 O5 
Geometric constant, K, cm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.49 

Compliance Calculat ions 

The calculated drive tube velocity for a clamped sample can be used to calculate a 

From equation (11) of reference 1, the dynamic shear compliance J*, is given 
mechanical shear compliance; the procedure followed is that of Fitzgerald (refs. 1 

and 2). 

bY 

where K is a geometric constant of the sample, 6 is the component of compliance that 
is in-phase with the applied shearing force, and 6' is the quadrature component of 
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compliance; Y L  is the mechanical admittance of the sample as deduced by Fitzgerald's 
analysis and is given as (ref. 1) 

v v  * L m L  - yf Y - Ym 
Ym = (9) 

where Ym is the mechanical admittance of the entire moving system (which from our 
point of view may include effects due to nonideal machine modes), and Y and Yf are 
the mechanical admittances of the ideal free tube and ideal floating mass, respectively, 
as defined in equations (2) and (4). It is worthy of note that if  the mechanical admittance 
of the moving system Ym is exactly equal to the mechanical admittance of the clamped 
sample model Ycs (eq. (7)), then the deduced sample mechanical admittance Y;$. will 
exactly equal the mechanical admittance of the ideal sample Ys (eq. (4)). Equation (9) 
shows how nonideal machine modes enter into what Fitzgerald calls the dynamic shear 
compliance of the sample. 

The calculated compliance data are presented in te rms  of the resolved components 
J' and. 3' given in equation (8); the components are plotted against frequency to give 
what is called a compliance spectrum. 

The Shorted Turn 

A principal defect in the design of the Fitzgerald machine is the presence of a thin 
aluminum str ip  directly beneath the current carrying coil of the drive tube. 
a shorted turn on the drive tube; the shorted turn moves in the radial magnetic field of 
the machine. The eddy currents which flow in this shorted turn produce an additional 
component of force on the drive tube; the magnitude and phase of the force component 
a r e  frequency dependent. 
wherein it is shown that the effect of the shorted turn is to produce a mixing of the stor- 
age and loss compliances according to the relations 

This forms 

This problem has been analyzed in detail in reference 10, 

J' - 
Jk = - 

1 +  
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J" - 
2 F -  

1 +(?) 
where J> and JF a r e  the compliances measured by Fitzgerald in the presence of a 
shorted turn, of inductance Lc and resistance Rc; Lp and J" a r e  the correct com- 
pliances that would be measured with a machine that did not have a shorted turn on the 
drive tube; and w is the angular frequency. From this relation it is clear that the ef- 
fect of the shorted turn will be most obvious near a high frequency resonance, since J" 
is small elsewhere and 6 is large both positive and negative near a resonance. These 
equations will be used to calculate the effect of the shorted turn on a high frequency res -  
onanc e. 

RESULTS 

The Ideal Machine Model 

The calculated drive tube velocity for the ideal f ree  tube is presented in figure 6 
along with the velocity plot for the clamped tube model of figure 1. A single mode exists 
for each of these ideal models; resonant frequencies a r e  16.8 and 2 .1  Hz for the free  
tube and clamped tube models respectively (these a r e  the experimentally observed 
values). 

The ideal clamped-sample model of figure 2 (switch position 3) has two resonant 
frequencies; one is the same as the clamped tube resonance, the other is determined 
approximately by the relation 

where w /2n is the system resonance frequency and Cs and M are definec in equa- 
tions (6) and (2), respectively. 
than wo defined by equation (3). 

The velocity plot for the ideal clamped-sample model is shown in figure 7, along 
with the compliance spectrum for this mode. The rea l  component of compliance 6, is 
equal to the sample compliance deduced from equation (12); in this figure the system 

S 
The value of os is usually more than 100 times larger 
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(b) Ideal free dr ive tube model of f i gu re  2. 

Figure 6. - Log dr ive tube velocity as func t i on  of frequency. 

12 



I I I I I 

(a) Log dr ive tube velocity as func t i on  of frequency. 
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(b) Storage compliance J' and loss compliance J". 

Figure 7. - Ideal clamped-sample model of f i gu re  2,  

resonance frequency is 3000 Hz. 
Fitzgerald's analysis assumes; one located at 2. 1 Hz, the other at about 3000 Hz. 

The velocity plot shows the two machine modes which 

The Nonideal Machine Models 

The calculated drive tube velocity for the nonrigid floating mass model of figure 3 
is presented in figure 8; three values of system resonance frequency ws/27r are  used to 
display the interaction between mode frequency (here 3000 Hz) and drive tube velocity. 
Figure 9 presents the compliance spectrum of this nonideal model. 

The calculated drive tube velocity for the two-sample nonrigid mass model of fig- 
u re  4 is given in figure 10, along with the compliance calculation for the same model. 

The drive tube velocity calculated for the fundamental resonance of a support wire 
(represented by the model of fig. 5) is presented in figure 11 for two different system 
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Figure 8. - Velocity plots for  f loat ing mass model of f i gu re  3. Floating mass mode occu rs  at 3000 Hz in each figure; 
system resonance frequency wS/27r i s  varied f rom 1500to 6000 Hz. 
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Figure 9. - Calculated compliance for f loat ing mass mode 
of f i gu re  3. Storage compliance J' and  loss compliance 
J" are plotted against frequency. System resonance 
frequency at 3000 Hz. 
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(a) Velocity plot; M1 is  1500 grams and 
M2 is 1OOOgrams. 
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(b)  Compliance calculation; storage compliance is J' and 

Figure 10. - Two-sample model of f i gu re  4. 

loss compliance is J". 
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(b) System frequency, 3000 Hz. 

frequency, 450 Hz; system resonance frequency, 
varied f rom 1000 to 3000 Hz to show effect of 
dr ive tube velocity o n  size of mode in velocity plot; 
Mw i s  taken to be 0.1 gram. 

Figure 11. - Support w i re  model. W i re  mode resonant 
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resonance frequencies. The frequency scale is expanded to show the resonance in 
greater detail. 

The Shorted Turn 

The floating mass mode shown in figure 3 is used to obtain a normal compliance 
spectrum for this mode. The result is shown in figure 12 along with a spectrum of the 
mode as seen with a machine which has a shorted turn on the driving tube. The mixing 
is as prescribed by equations (10) and (11). 

"Or-' 

-2.5 I- 
I I I 

" 
VI 
CT (a) Compliance resonance w i thou t  shorted turn on 

dr ive tu be. 

Frequency, Hz 

(b)  Compliance resonance w i th  shorted turn on 

Figure 12. - Comparison of compliance resonance w i th  
and without mixing effects of shorted turn on dr ive 
tube. 

dr ive tube. 
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DI SCU SSlON 

In order to understand the significance of Fitzgerald's data it is necessary to have a 
clear understanding of the role of the sample in the machine. 
above, the sample is represented by a massless spring with damping, which connects 
the drive tube to the floating mass. The mass of the sample can be ignored in compari- 
son to the drive tube mass since all sample information is deduced from velocity changes 
of the drive tube. As is shown in the models for a support w i re  (see fig. 11) the pertur- 
bation of the drive tube velocity is confined to a very narrow frequency range if the mass 
associated with the mode is small. Thus the sample mass would have to be an appre- 
ciable fraction of the drive tube mass before any significant modes could result involving 
the mass of the sample. 

The effective sample compliance for hard sample materials is determined primarily 
from considerations of surface roughness and applied static load; increased static load- 
ing increases the area of contact between sample and machine by deforming surface 
roughness and the effective sample compliance decreases. 
to 7) and Gotsky and Stearns (ref. 8) observe that the measured compliance decreases 
with increased static clamping and with the passage of time; both observations would be 
expected from a surface roughness model. It would appear that the large value of low 
frequency compliance measured by Fitzgerald is simply the compliance of the surface 
roughness region. 

Other aspects of Fitzgerald's observations can be understood in the light of the re-  
sults presented herein. The effect of the shorted turn of the drive tube on the observed 
compliance has been shown. The origin of the negative values for the loss compliance 
J i ,  is the mixing of the correct compliances J' and J" which is brought about by the 
eddy currents in the shorted turn. 

Fitzgerald (refs. 3 and 5 to 7) and Gotsky and Stearns (ref. 8) observe that some 
compliance resonances increase in frequency if static clamping is increased. Resonant 
modes in the floating mass have compliances which a r e  produced by the surface rough- 
ness of mating pieces of the floating mass assembly. Increasing the static clamping of 
the sample will most certainly increase the force on these mating surfaces and thus 
change the area of contact between two pieces. Increased area of contact results in de- 
creased compliance for that particular mode and the mode resonance frequency in- 
creases.  The highly nonlinear character of stiffness associated with the contact region 
surface roughness can cause certain modes to increase in resonance frequency beyond 
the range of measurement for sufficiently large applied force. 

constitution of the Fitzgerald machine. Consequently, it is certain that these modes 
exist in the Fitzgerald machine; the only uncertainty being the resonant frequency of a 

In the models presented 

Fitzgerald (refs. 3 and 5 

The mechanical models presented are deduced from an inspection of the mechanical 
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particular mode. The resonant frequencies of some machine modes are known; funda- 
mental modes of support wires 300 to 600 Hz; free drive tube 1 6 . 8  Hz; clamped tube 
2 . 1  Hz. In other cases, primarily where the compliance of the mode is determined 
from a surface roughness condition, we choose the mode compliance so as to place the 
resonance at some convenient position in the operating range of the machine. Damping 
values are determined by a comparison of calculated results and experimental data; the 
experimental velocity plot for  the free tube configuration of the NASA machine is used to 
obtain drive tube suspension damping; loss compliance data of Fitzgerald is used to ob- 
tain damping values for the sample and nonideal modes. 

While only one-dimensional models have been employed in this study, it is expected 
that more complex models will produce similar effects on the drive tube velocity plot 
and therefore produce similar effects in the compliance calculation. 

CONCLUSIONS 

The origin of the anomalous high compliance at low frequencies, characteristic of 
Fitzgerald's results, is shown to ar ise  from the high compliance of the surface rough- 
ness of the contact region of sample and machine. The effect of the shorted turn on a 
compliance resonance of sufficient s ize  and frequency is shown to produce the negative 
values for the loss compliance characteristic of Fitzgerald's data. 

The mechanical models presented above together with supporting calculations show 
that the many resonances, both large and small, reported by Fitzgerald can be produced 
by the machine itself; this can be the case even if the sample behaves in an ideal manner 
(i. e . ,  as a damped spring). 
nonideal motion over its range of operation, then the machine itself must be considered 
the principal source of the unusual effects reported by Fitzgerald. 

Thus it appears that if the machine does indeed execute 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, November 27, 1968, 
129-03-15-01-22. 

18 



APPENDIX - SYMBOLS 

C 

cf 

cS 

cW 

c1 

c2  

F 

J' 

J' ' 

J'F 

% 

J" 

K 

LC 

M 

Mf 

% 
M1 

compliance of drive tube suspen- 
sion 

compliance of floating mass 
suspension 

compliance of sample 

compliance of support wire in 
model 

compliance of part  of floating 
mass suspension 

compliance of part  of floating 
mass suspension 

sinusoidal force applied to drive 
tube 

storage compliance without 
shorted- turn effects 

loss compliance without shorted- 
turn effects 

storage compliance with shorted- 
turn effects 

loss compliance with shorted- 
turn effects 

c o nip1 ex c o mplianc e 

geometric constant of sample 

inductance of shorted turn on 
drive tube 

mass of drive tube 

mass of floating mass 

mass of wire  in model 

mass of part  of floating mass 

mass of part of floating mass 

RC 

v 
Y 

yf 

'm 

yL 

yS 

P 

Pf 

PS 

PW 

P l ?  p2 

w 

w O  

electrical resistance of shorted 
turn on dr ive tube 

complex drive tube velocity 

mechanical admittance of f ree  
drive tube 

mechanical admittance of clamped- 
sample configuration 

mechanical admittance of clamped- 
tube configuration 

mechanical admittance of ideal 
floating mass 

generalized complex mechanic a1 
ad mittanc e 

mechanical admittance of sample 
as deduced by Fitzgerald's 
analysis 

mechanical admittance of ideal 
sample 

mechanical damping of ideal f ree  
tube 

mechanical damping of floating 
mass 

mechanical damping of sample 

mechanical damping of part  of 
support wi re  

mechanical damping of portion of 
floating mass 

217 t imes frequency 

217 times frequency of system 
resonance 

277 t imes resonant frequency of 
free tube 
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